Illumination of the Multiple Sources of Selection Affecting Protein Sequences

Biomedical scientists and biologists routinely consider how selection shapes the structure and function of proteins of interest.  Less commonly, I suspect, do we consider how selection for attributes other than protein structure and function can favor or disfavor nucleotide sequences that encode particular amino acid sequences.   A new study (Stergachis et al., 2013) published in the December 13 issue of Science presents strong evidence for one particular source of selection (unrelated to protein function) influencing coding regions, known as exons, of genes.  This form of selection arises from the  fact, as revealed by the authors, that many transcription factors (TF), proteins that bind to specific nucleotide  sequences and regulate the frequency and pace of gene transcription (i.e., gene expression), bind in exonic regions of genes. (more…)

The Making of Metazoans: Cooperative Genes that Constrain Cheater Cells

In his 1987 book, “The Evolution of Individuality,” Leo Buss addressed a fundamental biological question: “How could individual multicellular animals (known as metazoans), like sea anemones, insects, frogs, and humans arise?”  Buss focused on a key challenge confronting any multicellular animal with differentiated cell types performing different functions: the potential conflict between selection on the whole organism and selection on the cells that constitute the organism (or on the whole genome and the individual genes that constitute the genome).   A new study (Dejosez et al., Sciencexpress, 2013) explores this issue by using a genome-wide screen to identify genes that favor cell cooperation and discourage so-called “cheater” cells that through genetic or epigenetic variation outcompete wild-type cells in the developing embryo. (more…)

Boundary-Breaking Evolution via B Lymphocyte Clonal Selection in Response to HIV-1

A central focus of recent research aimed at developing a vaccine for HIV-1 is the identification of potent broadly-neutralizing antibodies (bNAbs).  Due to work from several laboratories, many such antibodies have now been identified, produced in quantity as monoclonal antibodies, and characterized with respect to key properties such as epitope specificity, affinity for the corresponding HIV-1 epitope, and neutralizing activity against many strains of varying susceptibility to antibody-mediated inactivation (important examples of these publications are: Scheid et al., 2009; Walker et al., 2009; Wu et al., 2010; Walker et al., 2011; Huang et al., 2012).  These successes notwithstanding, the scale of the challenge facing the vaccine developers is clarified by the following facts: 1) potent bNAbs only develop in 10-30% of infected individuals, 2) it typically takes between two and three or four years after initial infection for these antibodies to appear in the blood of these individuals, and 3) antibodies with the desired attributes often have extraordinary numbers of somatic mutations in the variable domains that mediate binding to the HIV-1 antigen (Klein et al., 2013a).   A study (Klein et al., 2013b) published earlier this year from the laboratory of Michel Nussenzweig both illuminates one possible factor accounting for the impressive length of time and number of mutations associated with the generation of potent bNAbs and provides an extraordinary example of the power of intense selection to confound expectations arising from previously observed associations.  In this instance, the undermined expectations related to the well-established functional correlates of hypervariable and framework regions within antibody variable domains. (more…)

Phenotypic and Genotypic Variation of a Fungal Pathogen Powered by Codon Ambiguity and Degenerate Translation

The term “genetic code” is associated with a measure of ambiguity.  For molecular biologists, “genetic code” has historically referred to a table that provides for each messenger RNA ribonucleotide triplet the corresponding amino acid that is incorporated into the growing end of a nascent polypeptide chain, i.e. the translation from RNA sequence to protein sequence.  In colloquial parlance, “genetic code” is frequently used to refer to all or part of the deoxribonucleotide sequence of a genome.  A recent paper, published online ahead of print in Proceedings of the National Academy of Sciences (Bezerra et al., PNAS, 2013) demonstrates that this semantic ambiguity can have a counterpart in the ribosomal interpretation of the genetic code, using the technical molecular biological meaning of the latter term. (more…)