Embracing a Fuller History of the Application of Evolution to Medicine

In a recent blog post (http://evmed.asu.edu/blog/evolutionary-medicine-top-ten-questions), Randy Nesse suggests that the presentations and discussions at the second annual conference of the International Society for Evolution, Medicine, and Public Health (ISEMPH) were

“… instigated 25 years ago as George Williams and I discussed and grappled with how evolution could be useful for medicine, and what to call the enterprise.”

In her chapter (Bentley, 2016) introducing the just published book, “Evolutionary Thinking in Medicine: from Research to Policy and Practice,” the author acknowledges activity that can be considered evolutionary medicine in the years prior to 1991 but confines it to before roughly 1940.  Following the end of World War II, Professor Bentley finds little to no evidence of significant work in the field until the 1990s.  Unfortunately, these claims disregard substantial numbers of evolution-related studies that either influenced fundamental understanding of human health and disease or affected medical practice. (more…)

Malaria-Specific Antibody Diversification via Interchromosomal Insertion of a Non-Immunoglobulin Gene Sequence

Identifying broadly neutralizing antibodies against infectious agents such as influenza A viruses, HIV, and Plasmodium falciparum that display impressive degrees of antigenic variation is a major focus of investigators developing therapeutics and vaccines for pathogens of importance in public health (Corti and Lanzavecchia, 2013).  In a previous post, I discussed one study (Klein et al., 2013) illustrating the sorts of unanticipated types of mutations found for broadly neutralizing antibodies against HIV.  Lanzavecchia and colleagues have now identified antibodies reactive with antigens encoded by different isolates of Plasmodium falciparum and expressed on infected erythrocytes (Nature, 2015).  They find an unexpected source for the heavy chain variable domain amino acid sequences that confer the broad anti-malarial reactivity against proteins in the RIFIN family. (more…)

Tissue-Specific Stem Cell Mutation, Selection, and Evolution as a Cause of Aging

There is a mature literature on evolution and aging intended to explain how, despite selection for the morphological, metabolic, physiological, and behavioral prerequisites for survival and procreation, with the passage of time bodies deteriorate ultimately resulting in death. The focus of such explanations is typically on concepts such as age-related variation in the potency of selection and the related notion of antagonistic pleiotropy (Fabian and Flatt, 2011), by which suggests that genes able to promote survival and reproductive success in youth may increase loss of function with age. These concepts address selection on intact organisms. In contrast, a recent article in Science (Goodell and Rando, 2015) contains an article addressing the role of selection directly on somatic cells and in particular tissue-specific stem cells. (more…)

Nietzsche Undone: An Infection that Doesn’t Kill You Can Make You Weaker

The German philosopher, Friedrich Nietzsche, is known for a number of ideas among which a particularly oft-quoted one is, “That which does not kill us makes us stronger” (https://www.goodreads.com/quotes/30-that-which-does-not-kill-us-makes-us-stronger). A recent report in Cell (Fonseca et al., 2015) offers evidence that in the context of infection and immunity, the above aphorism may not be a reliable guide to reality. (more…)

Fighting HIV Evolution with an Evolved Therapeutic Agent: Phase I Dose Escalation Clinical Trial of a Potent Broadly Neutralizing Human Antibody

In previous commentaries (http://dev-evmedreview.pantheonsite.io/?p=1863; http://dev-evmedreview.pantheonsite.io/?p=837; http://dev-evmedreview.pantheonsite.io/?p=385), I have discussed the critical role of extensive B-cell and immunoglobulin gene evolution in generating broadly neutralizing antibodies for HIV-1.  Of course, the unprecedented magnitude of antibody evolution necessary to achieve potent neutralization of a high percentage of HIV strains reflects the unprecedented evolutionary plasticity of HIV that originates in both high mutation and recombination rates for the HIV genome (Korber et al., 2001).  A new study by Caskey et al. (Nature, 2015) from the Nussenzweig Laboratory reports results for a first-in-human dose escalation phase I clinical trial of a human monoclonal antibody (mAb) specific for the HIV envelope (env) protein. (more…)